Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Front Neurosci ; 18: 1354977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384482

RESUMO

In Huntington disease (HD) the prodromal phase has been increasingly investigated and is currently in focus for early interventional treatments. Also, the influence of sex on disease progression and severity in patients is under discussion, as a sex-specific impact has been reported in transgenic rodent models for HD. To this end, we have been studying these aspects in Sprague Dawley rats transgenic for HD. Here, we took up on the congenic F344tgHD rat model, expressing a fragmented Htt construct with 51 CAG repeats on an inbred F344 rat background and characterized potential sexual dimorphism and gene-dosage effects in rats during the pre-symptomatic phase (1-8 months of age). Our study comprises a longitudinal phenotyping of motor function, emotion and sensorimotor gating, as well as screening of metabolic parameters with classical and automated assays in combination with investigation of molecular HD hallmarks (striatal cell number and volume estimation, appearance of HTT aggregates). Differences between sexes became apparent during middle age, particularly in the motor and sensorimotor domains. Female individuals were generally more active, demonstrated different gait characteristics than males and less anxiolytic-like behavior. Alterations in both the time course and affected behavioral domains varied between male and female F344tgHD rats. First subtle behavioral anomalies were detected in transgenic F344tgHD rats prior to striatal MSN cell loss, revealing a prodromal-like phase in this model. Our findings demonstrate that the congenic F344tgHD rat model shows high face-validity, closely resembling the human disease's temporal progression, while having a relatively low number of CAG repeats, a slowly progressing pathology with a prodromal-like phase and a comparatively subtle phenotype. By differentiating the sexes regarding HD-related changes and characterizing the prodromal-like phase in this model, these findings provide a foundation for future treatment studies.

2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834391

RESUMO

Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.


Assuntos
Gordura Intra-Abdominal , Neuropeptídeo Y , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Dieta , Dieta Hiperlipídica , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/metabolismo
3.
Behav Brain Res ; 452: 114574, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37423320

RESUMO

Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Humanos , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Encéfalo/metabolismo , Neurônios/metabolismo
4.
Front Behav Neurosci ; 17: 1147784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351154

RESUMO

Automated gait assessment tests are used in studies of disorders characterized by gait impairment. CatWalk XT is one of the first commercially available automated systems for analyzing the gait of rodents and is currently the most used system in peer-reviewed publications. This automated gait analysis system can generate a large number of gait parameters. However, this creates a new challenge in selecting relevant parameters that describe the changes within a particular disease model. Here, for the first time, we performed a multi-disorder review on published CatWalk XT data. We identify commonly reported CatWalk XT gait parameters derived from 91 peer-reviewed experimental studies in mice, covering six disorders of the central nervous system (CNS) and peripheral nervous system (PNS). The disorders modeled in mice were traumatic brain injury (TBI), stroke, sciatic nerve injury (SNI), spinal cord injury (SCI), Parkinson's disease (PD), and ataxia. Our review consisted of parameter selection, clustering, categorization, statistical evaluation, and data visualization. It suggests that certain gait parameters serve as potential indicators of gait dysfunction across multiple disease models, while others are specific to particular models. The findings also suggest that the more site-specific the injury is, the fewer parameters are reported to characterize its gait abnormalities. This study strives to present a clearly organized picture of gait parameters used in each one of the different mouse models, potentially helping novel CatWalk XT users to apply this information to similar or related mouse models they are working on.

5.
Psychopharmacology (Berl) ; 240(4): 1011-1031, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36854793

RESUMO

RATIONALE: The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive. OBJECTIVES: The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms. METHODS: Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats. RESULTS: APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats. CONCLUSIONS: Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.


Assuntos
Agonistas de Dopamina , Receptores de Dopamina D4 , Camundongos , Ratos , Masculino , Animais , Agonistas de Dopamina/farmacologia , Reflexo de Sobressalto , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Anfetamina/farmacologia , Modelos Animais , Comportamento Animal
6.
Cells ; 12(2)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672196

RESUMO

Due to the limitations of current in vivo experimental designs, our comprehensive knowledge of vascular development and its implications for the development of large-scale engineered tissue constructs is very limited. Therefore, the purpose of this study was to develop unique in vivo imaging chambers that allow the live visualization of cellular processes in the arteriovenous (AV) loop model in rats. We have developed two different types of chambers. Chamber A is installed in the skin using the purse sting fixing method, while chamber B is installed subcutaneously under the skin. Both chambers are filled with modified gelatin hydrogel as a matrix. Intravital microscopy (IVM) was performed after the injection of fluorescein isothiocyanate (FITC)-labeled dextran and rhodamine 6G dye. The AV loop was functional for two weeks in chamber A and allowed visualization of the leukocyte trafficking. In chamber B, microvascular development in the AV loop could be examined for 21 days. Quantification of the microvascular outgrowth was performed using Fiji-ImageJ. Overall, by combining these two IVM chambers, we can comprehensively understand vascular development in the AV loop tissue engineering model¯.


Assuntos
Neovascularização Fisiológica , Engenharia Tecidual , Ratos , Animais , Engenharia Tecidual/métodos , Pele , Microscopia Intravital
7.
Biomolecules ; 12(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883562

RESUMO

The deposition of ß-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)-along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation-in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with ß-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to ß-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Behav Brain Res ; 434: 114020, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35870616

RESUMO

α-Synuclein (aSyn) is a protein implicated in physiological functions such as neurotransmitter release at the synapse and the regulation of gene expression in the nucleus. In addition, pathological aSyn assemblies are characteristic for a class of protein aggregation disorders referred to as synucleinopathies, where aSyn aggregates appear as Lewy bodies and Lewy neurites or as glial cytoplasmic inclusions. We recently discovered a novel post-translational pyroglutamate (pGlu) modification at Gln79 of N-truncated aSyn that promotes oligomer formation and neurotoxicity in human synucleinopathies. A priori, the appearance of pGlu79-aSyn in vivo involves a two-step process of free N-terminal Gln79 residue generation and subsequent cyclization of Gln79 into pGlu79. Prime candidate enzymes for these processes are matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC). Here, we analyzed the expression of aSyn, MMP-3, QC and pGlu79-aSyn in brains of two transgenic mouse models for synucleinopathies (BAC-SNCA and ASO) by triple immunofluorescent labellings and confocal laser scanning microscopy. We report a co-localization of these proteins in brain structures typically affected by aSyn pathology, namely hippocampus in BAC-SNCA mice and substantia nigra in ASO mice. In addition, Western blot analyses revealed a high abundance of QC, MMP-3 and transgenic human aSyn in brain stem and thalamus but lower levels in cortex/hippocampus, whereas endogenous mouse aSyn was found to be most abundant in cortex/hippocampus, followed by thalamus and brain stem. During aging of ASO mice, we observed no differences between controls and transgenic mice in MMP-3 levels but higher QC content in thalamus of 6-month-old transgenic mice. Transgenic human aSyn abundance transiently increased and then showed decrease in oldest ASO mice analyzed. Immunohistochemistry revealed a successive increase in intraneuronal and extracellular formation of pGlu79-aSyn in substantia nigra during aging of ASO mice. Together, our data are supportive for a role of MMP-3 and QC in the generation of pGlu79-aSyn in brains affected by aSyn pathology.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Animais , Encéfalo , Humanos , Lactente , Metaloproteinase 3 da Matriz , Camundongos , Camundongos Transgênicos
9.
J Biomed Mater Res A ; 110(9): 1551-1563, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35484827

RESUMO

The arteriovenous (AV) loop model is a key technique to solve one of the major problems of tissue engineering-providing adequate vascular support for a tissue construct of significant size. However, the molecular and cellular mechanisms of vascularization and factors influencing the generation of new tissue in the AV loop are still poorly understood. We previously established a novel intravital microscopy approach to study these events. In this study, we implanted our observation chamber filled with two types of hydrogels such as fibrin and methacrylate gelatin (GelMA) and performed intravital microscopy (IVM) on days 7, 14, and 21. Initial microvessel formation was observed in GelMA on day 14, while the vessel network showed clear indicators of network rearrangement and maturation on day 21. No visible microvessels were observed in fibrin. The chambers were explanted on day 21. Histological examination revealed higher numbers of microvessels in GelMA compared to fibrin, while the AV loop was thrombosed in all fibrin constructs, possibly due to matrix degradation. GelMA proved to be an ideal matrix for IVM studies in the AV loop model due to its slow degradation and transparency. This IVM model can be employed as a novel tool for live and thus faster comprehension of crucial events in the tissue regeneration process, which can improve tissue engineering application.


Assuntos
Fibrina , Engenharia Tecidual , Animais , Microscopia Intravital , Microvasos , Ratos , Engenharia Tecidual/métodos , Cicatrização
10.
Neuropathol Appl Neurobiol ; 48(1): e12750, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34312900

RESUMO

AIMS: We investigated N471D WASH complex subunit strumpellin (Washc5) knock-in and Washc5 knock-out mice as models for hereditary spastic paraplegia type 8 (SPG8). METHODS: We generated heterozygous and homozygous N471D Washc5 knock-in mice and subjected them to a comprehensive clinical, morphological and laboratory parameter screen, and gait analyses. Brain tissue was used for proteomic analysis. Furthermore, we generated heterozygous Washc5 knock-out mice. WASH complex subunit strumpellin expression was determined by qPCR and immunoblotting. RESULTS: Homozygous N471D Washc5 knock-in mice showed mild dilated cardiomyopathy, decreased acoustic startle reactivity, thinner eye lenses, increased alkaline phosphatase and potassium levels and increased white blood cell counts. Gait analyses revealed multiple aberrations indicative of locomotor instability. Similarly, the clinical chemistry, haematology and gait parameters of heterozygous mice also deviated from the values expected for healthy animals, albeit to a lesser extent. Proteomic analysis of brain tissue depicted consistent upregulation of BPTF and downregulation of KLHL11 in heterozygous and homozygous knock-in mice. WASHC5-related protein interaction partners and complexes showed no change in abundancies. Heterozygous Washc5 knock-out mice showing normal WASHC5 levels could not be bred to homozygosity. CONCLUSIONS: While biallelic ablation of Washc5 was prenatally lethal, expression of N471D mutated WASHC5 led to several mild clinical and laboratory parameter abnormalities, but not to a typical SPG8 phenotype. The consistent upregulation of BPTF and downregulation of KLHL11 suggest mechanistic links between the expression of N471D mutated WASHC5 and the roles of both proteins in neurodegeneration and protein quality control, respectively.


Assuntos
Proteômica , Paraplegia Espástica Hereditária , Animais , Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
11.
Cell Tissue Res ; 386(3): 617-636, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606000

RESUMO

Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26- pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26- pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.


Assuntos
Dipeptidil Peptidase 4/deficiência , Lipopolissacarídeos/efeitos adversos , Pulmão/crescimento & desenvolvimento , Animais , Estudos de Casos e Controles , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Ratos
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445621

RESUMO

Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.


Assuntos
Modelos Animais de Doenças , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/metabolismo , Transglutaminases/metabolismo , Animais , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Ratos , Transglutaminases/genética
13.
Acta Neuropathol ; 142(3): 399-421, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309760

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may-in analogy to pGlu-Aß peptides in Alzheimer's disease-act as a seed for pathogenic protein aggregation.


Assuntos
Aminoaciltransferases/metabolismo , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Sobrevivência Celular , Cromatografia em Gel , Neurônios Dopaminérgicos/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Sambucus nigra/citologia , Sambucus nigra/metabolismo
14.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064208

RESUMO

In Parkinson's disease, aggregates of α-synuclein within Lewy bodies and Lewy neurites represent neuropathological hallmarks. However, the cellular and molecular mechanisms triggering oligomeric and fibrillary α-synuclein aggregation are not fully understood. Recent evidence indicates that oxidative stress induced by metal ions and post-translational modifications such as phosphorylation, ubiquitination, nitration, glycation, and SUMOylation affect α-synuclein conformation along with its aggregation propensity and neurotoxic profiles. In addition, proteolytic cleavage of α-synuclein by specific proteases results in the formation of a broad spectrum of fragments with consecutively altered and not fully understood physiological and/or pathological properties. In the present review, we summarize the current knowledge on proteolytical α-synuclein cleavage by neurosin, calpain-1, cathepsin D, and matrix metalloproteinase-3 in health and disease. We also shed light on the contribution of the same enzymes to proteolytical processing of pathogenic proteins in Alzheimer's disease and report potential cross-disease mechanisms of pathogenic protein aggregation.


Assuntos
alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo , Peptídeo Hidrolases/metabolismo , Agregados Proteicos/fisiologia , Proteólise
15.
Tissue Eng Part C Methods ; 27(6): 357-365, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33906430

RESUMO

Tissue engineering in reconstructive surgery seeks to generate bioartificial tissue substitutes. The arteriovenous (AV) loop allows the generation of axially vascularized tissue constructs. Cellular mechanisms of this vascularization process are largely unclear. In this study, we developed two different chamber models for intravital microscopy and imaging of the AV loop in the rat. Multiple design variations were implanted and the stability of the chamber and AV loop patency was tested in vivo. Our novel chamber facilitates repetitive observation of the AV loop using fluorescence-enhanced intravital microscopy. This technique can be used for daily evaluation of leukocyte-endothelial cell interactions, vascularization, and tissue formation in the AV loop model on 14 consecutive days. Therefore, our newly developed model for intravital microscopy will provide better understanding of cellular and molecular processes in tissue engineering in the AV loop. Moreover, it supports initiation of the novel approaches for therapeutic applications. Impact statement In the Arteriovenous (AV) loop, axially vascularized tissue can be generated and modified using different tissue engineering approaches. Cellular mechanisms of this vascularization process are largely unclear. We managed to develop an intravital microscopy model for long-term observation of intravascular and perivascular events in the AV loop. Leukocyte-endothelial cell interactions, vascularization, and tissue formation in the AV loop can now be evaluated on a day-to-day basis. This will provide better understanding of cellular and molecular processes happening during tissue engineering within the AV loop.


Assuntos
Microscopia Intravital , Engenharia Tecidual , Animais , Neovascularização Fisiológica , Ratos
16.
Acta Neuropathol Commun ; 9(1): 68, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853667

RESUMO

Multiple system atrophy (MSA) is a rare, but fatal atypical parkinsonian disorder. The prototypical pathological hallmark are oligodendroglial cytoplasmic inclusions (GCIs) containing alpha-synuclein (α-syn). Currently, two MSA phenotypes are classified: the parkinsonian (MSA-P) and the cerebellar subtype (MSA-C), clinically characterized by predominant parkinsonism or cerebellar ataxia, respectively. Previous studies have shown that the transgenic MSA mouse model overexpressing human α-syn controlled by the oligodendroglial myelin basic protein (MBP) promoter (MBP29-hα-syn mice) mirrors crucial characteristics of the MSA-P subtype. However, it remains elusive, whether this model recapitulates important features of the MSA-C-related phenotype. First, we examined MSA-C-associated cerebellar pathology using human post-mortem tissue of MSA-C patients and controls. We observed the prototypical GCI pathology and a preserved number of oligodendrocytes in the cerebellar white matter (cbw) accompanied by severe myelin deficit, microgliosis, and a profound loss of Purkinje cells. Secondly, we phenotypically characterized MBP29-hα-syn mice using a dual approach: structural analysis of the hindbrain and functional assessment of gait. Matching the neuropathological features of MSA-C, GCI pathology within the cbw of MBP29-hα-syn mice was accompanied by a severe myelin deficit despite an increased number of oligodendrocytes and a high number of myeloid cells even at an early disease stage. Intriguingly, MBP29-hα-syn mice developed a significant loss of Purkinje cells at a more advanced disease stage. Catwalk XT gait analysis revealed decreased walking speed, increased stride length and width between hind paws. In addition, less dual diagonal support was observed toward more dual lateral and three paw support. Taken together, this wide-based and unsteady gait reflects cerebellar ataxia presumably linked to the cerebellar pathology in MBP29-hα-syn mice. In conclusion, the present study strongly supports the notion that the MBP29-hα-syn mouse model mimics important characteristics of the MSA-C subtype providing a powerful preclinical tool for evaluating future interventional strategies.


Assuntos
Cerebelo/patologia , Modelos Animais de Doenças , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Idoso , Animais , Ataxia Cerebelar/etiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/complicações , alfa-Sinucleína/genética
17.
Transl Psychiatry ; 11(1): 183, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758173

RESUMO

In our previous study, we found that prenatal trauma exposure leads to an anxiety phenotype in mouse pups, characterized by increased corticosterone levels and increased anxiety-like behavior. In order to understand the mechanisms by which aversive in utero experience leads to these long-lasting behavioral and neuroendocrine changes, we investigated stress reactivity of prenatally traumatized (PT) mice, as well as the expression and methylation levels of several key regulatory genes of the stress axis in the dorsal hippocampus (dHPC) of the PT embryo and adult mice. We detected increased corticotropin-releasing hormone receptor 1 (Crhr1) and decreased FK506 binding protein 5 (Fkbp5) mRNA levels in the left dHPC of adult PT mice. These alterations were accompanied by a decreased methylation status of the Crhr1 promoter and an increased methylation status of the Fkbp5 promoter, respectively. Interestingly, the changes in Fkbp5 and Crhr1 mRNA levels were not detected in the embryonic dHPC of PT mice. Together, our findings provide evidence that prenatal trauma has a long-term impact on stress axis function and anxiety phenotype associated with altered Crhr1 and Fkbp5 transcripts and promoter methylation.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
18.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767215

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Doença de Huntington , Neurônios/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos Endogâmicos C57BL , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Diabetes Res Clin Pract ; 173: 108691, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33549675

RESUMO

AIMS: Systemic inhibition of dipeptidyl peptidase 4 (DPP4) showed a protective effect in several transplant models. Here we assessed the specific role of extrarenal DPP4 in renal transplant rejection. METHODS: Kidneys from wildtype (wt) F344 rats were either transplanted in wt Dark Agouti or congenic rats not expressing DPP4. The remaining, not transplanted donor kidney served as healthy controls. To investigate early inflammatory events rats were sacrificed 3 days after transplantation and kidneys were evaluated for inflammatory cells, capillary rarefaction, proliferation, apoptosis and myofibroblasts by immunohistochemistry. RESULTS: Capillary ERG-1-positive endothelial cells were significantly more abundant in renal cortex when transplanted into DPP4 deficient compared to wt recipients. In contrast, TGF-ß and myofibroblasts were reduced by more than 25% in kidneys transplanted into DPP4 deficient compared to wt recipients. Numbers of CD161a-positive NK-cells were significantly lower in allografts in DPP4 deficient compared to wt recipients. Numbers of all other investigated immune cells were not affected by the lack of extrarenal DPP4. CONCLUSION: In early transplant rejection extrarenal DPP4 is involved in the recruitment of NK-cells and early fibrosis. Beneficial effects were less pronounced than reported for systemic DPP4 inhibition, indicating that renal DPP4 is an important player in transplantation-mediated injury.


Assuntos
Actinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Transplante de Rim/métodos , Células Matadoras Naturais/metabolismo , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doença Aguda , Animais , Modelos Animais de Doenças , Masculino , Ratos , Regulação para Cima
20.
Sci Rep ; 10(1): 22385, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372182

RESUMO

Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application.


Assuntos
Comportamento Animal , Núcleos Cerebelares , Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Imageamento por Ressonância Magnética , Compostos Organometálicos/farmacologia , Reflexo de Sobressalto , Animais , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/fisiologia , Gadolínio/farmacologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...